

ICT159 Assignment
Jin Cherng Chong

33170193

Question 1
1. Assumptions
1) Assume that the customer will input the data of the correct type. So in my program, one of the

things I asked the user to input is an integer for amount. So the user will be assumed to input an

Integer amount.

2) Assumes a customer will input some data (amount)

3) Assume the customer will want the change coins and not in credit card

4) Assume that the customer wants the change given with as little coins as possible

5) Assume that currency is Australian (AUD)

6) Assume the customer will want the change in coins and not in credit card

7) Assume the customer has no preference into what coin he wants. Eg: he doesn’t want change

in mostly 20 cent coins.

8) Assume the customer does not incur GST for his transaction

9) Bank teller has enough coins for the many customers and the many returning customers

10) Assume that the user will give the amount in form of “xx” not “0.xx” so not decimal form.

2. Algorithm

Author: Jin cherng chong

Date: 07/03/2018

Purpose: ICT159 Question1 Assignment

Start

 Void Function Change(Integer money, Integer chgFifty,

Integer chgTwenty, Integer chgTen, Integer chgFive)

 While(50 <= money) Then

 money -= 50

 chgFifty++

 EndWhile

 While(20 <= money) Then

 money -= 20

 chgTwenty++

 EndWhile

 While(10 <= money) Then

 money -= 10

 chgTen++

 EndWhile

 While(5 <= money) Then

 money -= 5

 chgFive++

 EndWhile

 Return

 End Function

 Void Function DspChange(Integer money, Integer dspFifty,

Integer dspTwenty, Integer dspTen, Integer dspFive)

 Output "Total money given: Return Fifty cents: Twenty

cents: Ten cents: Five cents: ", money, dspFifty, dspTwenty,

dspTen, dspFive

 Return

 End Function

 Character Function ChkMoney(Integer money)

 Character chkValid

 If(money >= 5) And (money <= 95) Then

 If(money % 5 == 0) Then

 chkValid = 'y';

 Else

 Output "Error: cents entered in range. NOT

multiple of 5"

 EndIf

 Else

 If(money % 5 == 0) Then

 Output "Error: cents entered NOT in range.

Multiple of 5."

 Else

 Output "Error: cents entered NOT in range.

NOT multiple of 5"

 EndIf

 EndIf

 Return(chkValid)

 End Function

 Integer Function GetMoney(void)

 Integer gtMoney

 Output "Please enter a valid amount: "

 Input gtMoney

 Return(gtMoney)

 End Function

 Integer Function Main()

 Integer money, fifty = 0, twenty = 0, ten = 0, five = 0

 Character validAmount

 Do

 money = GetMoney()

 validAmount = ChkMoney(money)

 While(validAmount != 'y')

 Change(money, fifty, twenty, ten, five)

 DspChange(money, fifty, twenty, ten, five)

 Return(0)

 End Function

Stop

3. Test Table
Test # Test Description Inputs Expected

Outputs
Algorithm
Outputs

Program
Success/Failure

1 Within lower range
but only just
multiple of 5

5 Given: 5
Return
Five cents: 1
Ten cents: 0
Twenty cents: 0
Fifty cents: 0

Total money
given: 5 Return
Fifty cents: 0
Twenty cents: 0
Ten cents: 0
Five cents: 1

Success

2 Within upper range
but only just and
multiple of 5 value

95 Given: 95
Return
Five cents: 1
Ten cents: 0
Twenty cents: 2
Fifty cents: 1

Total money
given: 95
Return Fifty
cents: 1 Twenty
cents: 2 Ten
cents: 0 Five
cents: 1

Success

3 Zero Input 0 cents entered
NOT in range.
Multiple of 5.

Please enter a
valid amount

Error: cents
entered NOT in
range. Multiple
of 5.

Please enter a
valid amount:

Success

4 Within range but
not multiple of 5

6 Cents entered in
range. NOT
multiple of 5.

Please enter valid
number

Error: cents
entered in
range. NOT
multiple of 5

Please enter a
valid amount:

Success

5 Within Range and
Multiple of 5

45 Given: 45
Return
Five cents: 1
Ten cents: 0
Twenty cents: 2
Fifty cents: 0

Total money
given: 45
Return Fifty
cents: 0 Twenty
cents: 2 Ten
cents: 0 Five
cents: 1

Success

6 Negative input -1 cents entered
NOT in range.
NOT multiple of 5

Please enter a
valid amount:

Error: cents
entered NOT in
range. NOT
multiple of 5

Please enter a
valid amount:

Success

7 Within Range and
Multiple of 5 and
exactly a coin value
(50)

50 Given: 50
Return
Five cents: 0
Ten cents: 0
Twenty cents: 0
Fifty cents: 1

Total money
given: 50
Return Fifty
cents: 1 Twenty
cents: 0 Ten
cents: 0 Five
cents: 0

Success

8 Within range and
multiple of 5 and
not an exact coin
value

60 Given: 60
Return
Five cents: 0
Ten cents: 1
Twenty cents: 0
Fifty cents: 1

Total money
given: 60
Return Fifty
cents: 1 Twenty
cents: 0 Ten
cents: 1 Five
cents: 0

Success

9 Within range and
multiple of 5 and
exactly all coin
values delegated

85 Given: 85
Return
Five cents: 1
Ten cents: 1
Twenty cents: 1
Fifty cents: 1

Total money
given: 85
Return Fifty
cents: 1 Twenty
cents: 1 Ten
cents: 1 Five
cents: 1

Success

Test # Test Description Inputs Expected
Outputs

Algorithm
Outputs

Program
Success/Failure

10 Within range and
multiple of 5 and
exact coin value
(10)

10 Given: 10
Return
Five cents: 0
Ten cents: 1
Twenty cents: 0
Fifty cents: 0

Total money
given: 10
Return Fifty
cents: 0 Twenty
cents: 0 Ten
cents: 1 Five
cents: 0

Success

11 Input of incorrect
data type

12 Null input

4. Code
/**

Author: Jin cherng chong

Date: 23/04/2018

Purpose: ICT159 Question1 Assignment

*************************/

#include <stdio.h>

void Change(int money, int &chgFifty, int &chgTwenty, int

&chgTen, int &chgFive) //Added chg in front to differentiate from

dspFifty and fifty for debugging purposes. Also since prefer not

to have all variables same name (style)

{

 while(50 <= money)

 {

 money -= 50;

 chgFifty++;

 }

 while(20 <= money)

 {

 money -= 20;

 chgTwenty++;

 }

 while(10 <= money)

 {

 money -= 10;

 chgTen++;

 }

 while(5 <= money)

 {

 money -= 5;

 chgFive++;

 }

 return;

}

void DspChange(int money, int dspFifty, int dspTwenty, int

dspTen, int dspFive)

{

 printf("Total money given: %d Return Fifty cents: %d Twenty

cents: %d Ten cents: %d Five cents: %d\n", money, dspFifty,

dspTwenty, dspTen, dspFive);

 return;

}

char ChkMoney(int money)

{

 char chkValid;

 if(money >= 5 && money <= 95)

 {

 if(money % 5 == 0)

 {

 chkValid = 'y';

 }

 else

 {

 printf("Error: cents entered in range. NOT multiple

of 5\n");

 }

 }

 else

 {

 if (money % 5 == 0)

 {

 printf("Error: cents entered NOT in range. Multiple

of 5\n");

 }

 else

 {

 printf("Error: cents entered NOT in range. NOT

multiple of 5\n");

 }

 }

 return(chkValid);

}

int GetMoney(void)

{

 int gtMoney;

 printf("Please enter a valid amount: "); //Not error testing

if a user types 40.86 etc since it is assumed that the value

imputed would be an integer.

 scanf("%d%*c", >Money);

 return(gtMoney);

}

int main()

{

 int money, fifty = 0, twenty = 0, ten = 0, five = 0;

 char validAmount;

 do

 {

 money = GetMoney();

 validAmount = ChkMoney(money);

 } while(validAmount != 'y');

 Change(money, fifty, twenty, ten, five);

 DspChange(money, fifty, twenty, ten, five);

 return(0);

}

5. Results of Program Testing

TestCase 1:

Please enter a valid amount: 5

Total money given: 5 Return fifty cents: 0 twenty cents: 0 ten cents: 0 five cents: 1

TestCase 2:

Please enter a valid amount: 95

Total money given: 95 Return Fifty cents: 1 Twenty cents: 2 Ten cents: 0 Five cents: 1

TestCase 3:

Please enter a valid amount: 0

Error: cents entered NOT in range. Multiple of 5

Please enter a valid amount:

TestCase 4:

Please enter a valid amount: 6

Error: cents entered in range. NOT multiple of 5

Please enter a valid amount:

TestCase 5:

Please enter a valid amount: 45

Total money given: 45 Return Fifty cents: 0 Twenty cents: 2 Ten cents: 0 Five cents: 1

TestCase 6:

Please enter a valid amount: -1

Error: cents entered NOT in range. NOT multiple of 5

Please enter a valid amount:

TestCase 7:

Please enter a valid amount: 50

Total money given: 50 Return Fifty cents: 1 Twenty cents: 0 Ten cents: 0 Five cents: 0

TestCase 8:

Please enter a valid amount: 60

Total money given: 60 Return Fifty cents: 1 Twenty cents: 0 Ten cents: 1 Five cents: 0

TestCase 9:

Please enter a valid amount: 85

Total money given: 85 Return Fifty cents: 1 Twenty cents: 1 Ten cents: 1 Five cents: 1

TestCase 10:

Please enter a valid amount: 10

Total money given: 10 Return Fifty cents: 0 Twenty cents: 0 Ten cents: 1 Five cents: 0

6. Self Assessment

The first part of the assessment required us to create a c program, which allowed a customer to

input an amount of money and the money would be given back in coins. This activity at first was

quite perplexing. However, I had at least some sort of idea on how to do it which was all I really

needed. There were four principles that this assignment needed to abide by.

The first principle that influenced my assignment was low coupling. Low coupling aims to limit

the interaction with data between modules. This principle was quite difficult to abide since there

were many different possible solutions to the assessment and the issue came with deciding how

many modules I wanted. Originally, I planned for one of my module to call another module (not

the main) but this would have brought about unnecessary interactions. Therefore, in the end I

stuck to the strategy that the past workshops used and that was making all modules interact with

the main function.

The second principle that influenced my assignment was high cohesion. The principle of high

cohesion is where each module should solve one part of the problem. In my program, I wanted to

combine the display module and calculation function module together. I thought it would look

neater however; this principle stopped me from doing so. Since combing the display module and

the calculation model would mean a single module solves two parts of the problem thus breaking

the principle of high cohesion.

Another principle that influenced my assignment was code-reuse. This principle aims to make the

solution general enough so it can more broadly useful then just to solve the immediate problem.

To adhere to this principle I made sure I had my modules as generally as possible and abided by

the rule of one part one module. In addition, I made sure that the first modules could be reused

for the second part of the assignment. So no additional modules would be required to solve the

second part. Also I wanted to make sure the first part of the assignment was very similar to the

second part of the assignment. So the original variable names and code would be reused for the

second part of the assignment; picking variable names that was logical and could be understood

clearly was quite difficult.

Question 2
1. Assumptions

• Customer does not provide negative cents no eg: 40.-40

• Customer will not provide cents in 3 decimal places only maximum 2 decimal places

• If the customer wants cents then assume they input it in decimal form ie if they want 40

cents they will type “0.xx” → “0.40” ie

• Customer will give money in either data type of float or integer (but integers entered will

also consider the other assumptions in question 2 such as it can’t be negative integers and

others)

• Assume that if a negative dollar is provided the cents provided will also be negative. Eg: -

40.40 = -40 dollars and -40 cents

• Assume if the if a customer wants 5 cents then the 5 will be in the second decimal place ie

“0.05”

• 0 is a multiple of 5

2. Algorithm

Author: Jin cherng chong

Date: 07/03/2018

Purpose: ICT159 Q2 Algorithm

Start

 Void Function Change(Integer cents, Integer dollars, Integer

chgFifty, Integer chgTwenty, Integer chgTen, Integer chgFive,

Integer chgHundredD, Integer chgFiftyD, Integer chgTwentyD,

Integer chgTenD, Integer chgFiveD, Integer chgTwoD, Integer

chgOneD)

 While(50 <= cents) Then

 cents -= 50

 chgFifty++

 EndWhile

 While(20 <= cents) Then

 cents -= 20

 chgTwenty++

 EndWhile

 While(10 <= cents) Then

 cents -= 10

 chgTen++

 EndWhile

 While(5 <= cents) Then

 cents -= 5

 chgFive++

 EndWhile

 While(100 <= dollars) Then

 dollars -= 100

 chgHundredD++

 EndWhile

 While(50 <= dollars) Then

 dollars -= 50

 chgFiftyD++

 EndWhile

 While(20 <= dollars) Then

 dollars -= 20

 chgTwentyD++

 EndWhile

 While(10 <= dollars) Then

 dollars -= 10

 chgTenD++

 EndWhile

 While(5 <= dollars) Then

 dollars -= 5

 chgFiveD++

 EndWhile

 While(2 <= dollars) Then

 dollars -= 2

 chgTwoD++

 EndWhile

 While(1 <= dollars) Then

 dollars -= 1

 chgOneD++

 EndWhile

 Return

 End Function

 Void Function DspChange(Integer money, Integer dspFifty,

Integer dspTwenty, Integer dspTen, Integer dspFive, Integer

dspHundredD, Integer dspFiftyD, Integer dspTwentyD, Integer

dspTenD, Integer dspFiveD, Integer dspTwoD, Integer dspOneD)

 Output "Total money given: ", money

 Output "Return Hundred dollars: Fifty dollars: Twenty

dollars: Ten dollars: Five dollars: Two dollars: One dollars:

", dspHundredD, dspFiftyD, dspTwentyD, dspTenD, dspFiveD,

dspTwoD, dspOneD

 Output "Return Fifty cents: Twenty cents: Ten cents:

Five cents: ", dspFifty, dspTwenty, dspTen, dspFive

 Return;

 End Function

 Character Function ChkMoney(Float money, Integer cents,

Integer dollars)

 Character chkValid

 dollars = (int) money

 cents = (int) (((money - dollars)*100) + 0.5)

 If(cents % 5 == 0) Then

 If(dollars >= 0) Then

 chkValid = 'y'

 Else

 Output "Error: cents is multiple of 5.

Dollars is positive"

 EndIf

 Else

 If(dollars >= 0) Then

 Output "Error: cents is NOT multiple of 5.

Dollar is positive"

 Else

 Output "Error: cents is NOT multiple of 5.

Dollar is negative"

 EndIf

 EndIf

 Return(chkValid)

 End Function

 Float Function GetMoney(void)

 Float gtMoney

 Output "Please enter a valid amount: "

 Input gtMoney

 If(gtMoney < 0) Then

Output "Warning!!! You've entered a negative

value! Not only does it not make sense but the

program may give you wrong error."

 EndIf

 Return(gtMoney)

 End Function

 Integer Function Main()

 Integer cents, dollars, fifty = 0, twenty = 0, ten = 0,

five = 0, hundredD = 0, fiftyD = 0, twentyD = 0, tenD = 0, fiveD

= 0, twoD = 0, oneD = 0

 Float money

 Character validAmount

 Do

 money = GetMoney()

 validAmount = ChkMoney(money, cents, dollars)

 While(validAmount != 'y')

 Change(cents, dollars, fifty, twenty, ten, five,

hundredD, fiftyD, twentyD, tenD, fiveD, twoD, oneD)

 DspChange(money, fifty, twenty, ten, five, hundredD,

fiftyD, twentyD, tenD, fiveD, twoD, oneD)

 Return(0)

 End Function

Stop

3. Test Table
Test # Test Description Inputs Expected

Outputs
Algorithm
Outputs

Program
Success/Failure

1 All “valid dollar
values” delegated
and cents

188.85 Total money given:
188.85 Return Hundred
dollars: 1 Fifty dollars: 1
Twenty dollars: 1 Ten
dollars: 1 Five dollars: 1
Two dollars: 1 One
dollars: 1
Fifty cents: 1 Twenty
cents: 1 Ten cents: 1
Five cents: 1

Total money given:
188.85 Return
Hundred dollars: 1
Fifty dollars: 1 Twenty
dollars: 1 Ten dollars:
1 Five dollars: 1 Two
dollars: 1 One dollars:
1 Return Fifty cents: 1
Twenty cents: 1 Ten
cents: 1
Five cents: 1

Success

2 All “valid dollar
values” are
delegated

188 Total money given:
188.00 Return Hundred
dollars: 1 Fifty dollars: 1
Twenty dollars: 1 Ten
dollars: 1 Five dollars: 1
Two dollars: 1 One
dollars: 1 Return
Fifty cents: 0 Twenty
cents: 0 Ten cents

Total money given:
188.00 Return
Hundred dollars: 1
Fifty dollars: 1 Twenty
dollars: 1 Ten dollars:
1 Five dollars: 1 Two
dollars: 1 One dollars:
1 Return
Fifty cents: 0 Twenty
cents: 0 Ten cents: 0
Five cents: 0

Success

3 Negative Input -10.50 Negative amount doesn’t
make sense

cents is NOT
multiple of 5.
Dollar is negative

Warning!!! You've
entered a negative
value! Not only does it
not make sense but
the program may give
you wrong error.
Error: cents is NOT
multiple of 5. Dollar is
negative

Success

4 A large “valid dollar
values” and
maximum cents
value

1400.95 Total money given:
1400.95 Return Hundred
dollars: 14 Fifty dollars: 0
Twenty dollars: 0 Ten
dollars: 0 Five dollars: 0
Two dollars: 0 One
dollars: 0
Fifty cents: 1 Twenty
cents: 2 Ten cents: 0
Five cents: 1

Total money given:
1400.95 Return
Hundred dollars: 14
Fifty dollars: 0 Twenty
dollars: 0 Ten dollars:
0 Five dollars: 0 Two
dollars: 0 One dollars:
0 Return
Fifty cents: 1 Twenty
cents: 2 Ten cents: 0
Five cents: 1

Success

5 Negative Dollars
(Integer)

-10 Negative amount doesn’t
make sense

cents is multiple
of 5. Dollar is
negative

Warning!!! You've
entered a negative
value! Not only does it
not make sense but
the program may give
you wrong error.
Error: cents is multiple
of 5. Dollars is
positive.

Success

6 Just outside the
last “valid dollar
values” but a “valid
dollar amount”

101 Total money given:
101.00 Return Hundred
dollars: 1 Fifty dollars: 0
Twenty dollars: 0 Ten
dollars: 0 Five dollars: 0
Two dollars: 0 One
dollars: 1
Fifty cents: 0 Twenty
cents: 0 Ten cents: 0
Five cents: 0

Total money given:
101.00 Return
Hundred dollars: 1
Fifty dollars: 0 Twenty
dollars: 0 Ten dollars:
0 Five dollars: 0 Two
dollars: 0 One dollars:
1 Return
Fifty cents: 0 Twenty
cents: 0 Ten cents: 0
Five cents: 0

Success

7
Enters cents as
integer with no
dollars

20.00

Total money give: 20.00
Return Hundred dollars: 0
Fifty dollars: 0 Twenty
dollars: 1 Ten dollars: 0
Five dollars: 0 Two
dollars: 0 One dollars: 0
Fifty cents: 0 Twenty
cents: 0 Ten cents: 0
Five cents: 0

Total money given:
20.00 Return Hundred
dollars: 0 Fifty dollars:
0 Twenty dollars: 1
Ten dollars: 0 Five
dollars: 0 Two dollars:
0 One dollars: 0
Return
Fifty cents: 0 Twenty
cents: 0 Ten cents: 0
Five cents: 0

Success

8 A “valid dollar
amount” but the
amount is a big
amount

1250 Total money give:
1250.00 Return Hundred
dollars: 12 Fifty dollars: 1
Twenty dollars: 0 Ten
dollars: 0 Five dollars: 0
Two dollars: 0 One
dollars: 0
Fifty cents: 0 Twenty
cents: 0 Ten cents Five
cents: 0

Total money given:
1250.00 Return
Hundred dollars: 12
Fifty dollars: 1 Twenty
dollars: 0 Ten dollars:
0 Five dollars: 0 Two
dollars: 0 One dollars:
0 Return
Fifty cents: 0 Twenty
cents: 0 Ten cents: 0
Five cents: 0

Success

9 A “valid dollar
value” but the cents
given is not a
multiple

20.96 cents is NOT multiple
of 5. Dollar is positive

Error: cents is NOT
multiple of 5. Dollar
is positive

Success

Test # Test Description Inputs Expected
Outputs

Algorithm
Outputs

Program
Success/Failure

10 Enter 5 cents 0.05 Total money give: 0.05
Return Hundred dollars: 0
Fifty dollars: 0 Twenty
dollars: 0 Ten dollars: 0
Five dollars: 0 Two
dollars: 0 One dollars: 0
Fifty cents: 0 Twenty
cents: 0 Ten cents: 0 Five
cents: 1

Total money give: 0.05
Return Hundred
dollars: 0 Fifty dollars:
0 Twenty dollars: 0
Ten dollars: 0 Five
dollars: 0 Two dollars:
0 One dollars: 0
Return
Fifty cents: 0 Twenty
cents: 0 Ten cents: 0
Five cents: 1

Success

11 Input of incorrect
data type

12 Null input

4. Code
/**

Author: Jin cherng chong

Date: 23/04/2018

Purpose: ICT159 Question2 Assignment

*************************/

#include <stdio.h>

void Change(int cents, int dollars, int &chgFifty, int

&chgTwenty, int &chgTen, int &chgFive, int &chgHundredD, int

&chgFiftyD, int &chgTwentyD, int &chgTenD, int &chgFiveD, int

&chgTwoD, int &chgOneD)

{

 while(50 <= cents)

 {

 cents -= 50;

 chgFifty++;

 }

 while(20 <= cents)

 {

 cents -= 20;

 chgTwenty++;

 }

 while(10 <= cents)

 {

 cents -= 10;

 chgTen++;

 }

 while(5 <= cents)

 {

 cents -= 5;

 chgFive++;

 }

 while(100 <= dollars)

 {

 dollars -= 100;

 chgHundredD++;

 }

 while(50 <= dollars)

 {

 dollars -= 50;

 chgFiftyD++;

 }

 while(20 <= dollars)

 {

 dollars -= 20;

 chgTwentyD++;

 }

 while(10 <= dollars)

 {

 dollars -= 10;

 chgTenD++;

 }

 while(5 <= dollars)

 {

 dollars -= 5;

 chgFiveD++;

 }

 while(2 <= dollars)

 {

 dollars -= 2;

 chgTwoD++;

 }

 while(1 <= dollars)

 {

 dollars -= 1;

 chgOneD++;

 }

 return;

}

void DspChange(float money, int dspFifty, int dspTwenty, int

dspTen, int dspFive, int dspHundredD, int dspFiftyD, int

dspTwentyD, int dspTenD, int dspFiveD, int dspTwoD, int dspOneD)

{

 printf("Total money given: %.2f\n", money);

 printf("Return Hundred dollars: %d Fifty dollars: %d Twenty

dollars: %d Ten dollars: %d Five dollars: %d Two dollars: %d One

dollars: %d\n", dspHundredD, dspFiftyD, dspTwentyD, dspTenD,

dspFiveD, dspTwoD, dspOneD);

 printf("Return Fifty cents: %d Twenty cents: %d Ten cents:

%d Five cents: %d\n", dspFifty, dspTwenty, dspTen, dspFive);

 return;

}

char ChkMoney(float money, int ¢s, int &dollars)

{

 char chkValid;

 dollars = (int) money;

 cents = (int) (((money - dollars)*100) + 0.5);

 if(cents % 5 == 0)

 {

 if(dollars >= 0)

 {

 chkValid = 'y';

 }

 else

 {

 printf("Error: cents is multiple of 5. Dollars is

positive\n");

 }

 }

 else

 {

 if (dollars >= 0)

 {

 printf("Error: cents is NOT multiple of 5. Dollar is

positive\n");

 }

 else

 {

 printf("Error: cents is NOT multiple of 5. Dollar is

negative\n");

 }

 }

 return(chkValid);

}

float GetMoney(void)

{

 float gtMoney;

 printf("Please enter a valid amount: ");

 scanf("%f%*c", >Money);

if(gtMoney < 0)

 {

printf("Warning!!! You've entered a negative value! Not

only does it not make sense but the program may give

you wrong error.\n");

 }

 return(gtMoney);

}

int main()

{

 int cents = 0, dollars = 0, fifty = 0, twenty = 0, ten = 0,

five = 0, hundredD = 0, fiftyD = 0, twentyD = 0, tenD = 0, fiveD

= 0, twoD = 0, oneD = 0;

 float money;

 char validAmount;

 do

 {

 money = GetMoney();

 validAmount = ChkMoney(money, cents, dollars);

 } while(validAmount != 'y');

 Change(cents, dollars, fifty, twenty, ten, five, hundredD,

fiftyD, twentyD, tenD, fiveD, twoD, oneD);

 DspChange(money, fifty, twenty, ten, five, hundredD, fiftyD,

twentyD, tenD, fiveD, twoD, oneD);

 return(0);

}

5. Results of Program Testing

TestCase 1:

Please enter a valid amount: 188.85

Total money given: 188.85

Return Hundred dollars: 1 Fifty dollars: 1 Twenty dollars: 1 Ten dollars: 1 Five dollars: 1 Two

dollars: 1 One dollars: 1

Return Fifty cents: 1 Twenty cents: 1 Ten cents: 1 Five cents: 1

TestCase 2:

Please enter a valid amount: 188

Total money given: 188.00

Return Hundred dollars: 1 Fifty dollars: 1 Twenty dollars: 1 Ten dollars: 1 Five dollars: 1 Two

dollars: 1 One dollars: 1

Return Fifty cents: 0 Twenty cents: 0 Ten cents: 0 Five cents: 0

TestCase 3:

Please enter a valid amount: -10.50

Warning!!! You've entered a negative value! Not only does it not make sense but the program

may give you wrong error.

Error: cents is NOT multiple of 5. Dollars is negative

Please enter a valid amount:

TestCase 4:

Please enter a valid amount: 1400.95

Total money given: 1400.95

Return Hundred dollars: 14 Fifty dollars: 0 Twenty dollars: 0 Ten dollars: 0 Five dollars: 0 Two

dollars: 0 One dollars: 0

Return Fifty cents: 1 Twenty cents: 2 Ten cents: 0 Five cents: 1

TestCase 5:

Please enter a valid amount: -10

Warning!!! You've entered a negative value! Not only does it not make sense but the program

may give you wrong error.

Error: cents is multiple of 5. Dollar is positive

Please enter a valid amount:

TestCase 6:

Please enter a valid amount: 101

Total money given: 101.00

Return Hundred dollars: 1 Fifty dollars: 0 Twenty dollars: 0 Ten dollars: 0 Five dollars: 0 Two

dollars: 0 One dollars: 1

Return Fifty cents: 0 Twenty cents: 0 Ten cents: 0 Five cents: 0

TestCase 7:

Please enter a valid amount: 20.00

Total money give: 20.00

Return Hundred dollars: 0 Fifty dollars: 0 Twenty dollars: 1 Ten dollars: 0 Five dollars: 0 Two

dollars: 0 One dollars: 0

Return Fifty cents: 0 Twenty cents: 0 Ten cents: 0 Five cents: 0

TestCase 8:

Please enter a valid amount: 1250

Total money given: 1250.00

Return Hundred dollars: 12 Fifty dollars: 1 Twenty dollars: 0 Ten dollars: 0 Five dollars: 0 Two

dollars: 0 One dollars: 0

Return Fifty cents: 0 Twenty cents: 0 Ten cents: 0 Five cents: 0

TestCase 9:

Please enter a valid amount: 20.96

Error: cents is NOT multiple of 5. Dollar is positive

Please enter a valid amount:

TestCase 10:

Please enter a valid amount: 0.05

Total money give: 0.05

Return Hundred dollars: 0 Fifty dollars: 0 Twenty dollars: 0 Ten dollars: 0 Five dollars: 0 Two

dollars: 0 One dollars: 0

Return Fifty cents: 0 Twenty cents: 0 Ten cents: 0 Five cents: 1

6. Self Assessment

One of the difficulties with this part of the assessment is the method of converting a dollars and

cents (float) and breaking it into dollars (int) and cents (int). The method of braking down a float

to cents and dollars was given to us. The result of providing the formula is that I did not quite

understand how the formula worked therefore any issues I had with the formula I could not

rectify.

The biggest issue was if a customer were to enter a value with three decimal then issues would

arise. I tried to find methods to solve this (while still using the formula) but it was beyond my

abilities and this unit’s expectation. The scanf does not allow for precisions, which was one of

my solutions. The biggest issue with allowing three decimal place values has to do with the

inconsistency with rounding when converting. For example if a user entered “20.645” the float

cents would be rounded up to “65” cents, while if the user entered “20.345” the float cents would

be rounded down to “34” cents. As you can see one of the user’s entries is rounded up, “64”,

while the other stays the same, “34”. Unfortunately, the problems lies with the method that was

provided to all the students to convert float to dollars and cents. The best method that I found to

deal with the issue is to assume that customers will not enter a value with three decimal places.

Other methods such as just allowing the varying rounding to happen is too inconsistent.

The second issue with the formula is that if a user enters a negative integer then errors will occur.

For example, if a user enters “-10” then the output would state that -10 is a positive. What the

program should output for -10 entry is that the dollar value is negative. However, if a user enters

a negative float “-10.50” then the program works out that the dollars as being a negative. This

issue is a result of the formula provided. However, as you noticed for my GetMoney() function I

added error checking by stating the condition that if the money is entered is <0 then a warning

message would pop up. Therefore, my method of dealing with negative integer values was to

give a warning. The reasons why I didn’t implement the condition in the first part (question 1) of

my assignment is because the first part of the assignment could error check and deal with

negative integer values without stuffing up. Again the reason why the Question2 program can’t

deal with negative values too well is because of the formula processing of the data. Alternatively,

I could have made an assumption that no negative integer values were entered but I wanted my

program to be more robust.

Another issues I had initially was to do with decimal places for the outputs of money given. My

first version of the program outputted the total money given with 4 decimal points. So if a user

enter 80 then the total money given output would be 80.0000. I fixed this by adding a "%.2f" to

round two decimal places. Instead of 80.0000, it would print 80.00, which is more realistic for

currency. Also adding “"%.2f" allowed for $40.4 (40 cents) to print as 40.40.

The third issue I had was trying to reduce the amount of variables I needed. My originally plan

was to use global variables but the use of global variables goes against low cohesion. It would

result in more modules interacting with each other. So my alternative method was using arrays

but the issue with using arrays is that it is incredible difficult to pass by reference them onto

another module. So in the end the only method that was easy and reduced low cohesion was in

fact having multiple variables and pass by referencing them only other modules.

